
报告人:彭岳建(湖南大学教授、博士生导师)
报告时间:2025年4月25日下午4:00--5:00
报告地点:数学科学学院会议室8303
报告摘要:
Thematching conjecture of Erdős concerns the maximum number of edges in an r-uniformgraph with given matching number. It is natural to determine the maximum numberof other substructures. Let S_{r-1,2}^{r} denote the r-uniform graph consistingof 2 edges intersecting at r-1 vertices. We determine the maximum number ofcopies of S_{r-1,2}^{r} in r-uniform graphs on [n] with matching number lessthan s and characterize extremal hypergraphs. Counting the maximum number ofcopies of S_{r-1,2}^{r} in hypergraphs with given matching number is alsorelated to the hypergraph Turán number of a matching in l_2 form introduced byBalogh, Clemen, and Lidický. Combining with the result of Frankl and Kupavskiiconcerning the Erdős' matching conjecture, our result implies a result by Brookand Linz concerning the Erdős' matching conjecture in l_2 form, but theconverse is not true.
报告人简介:
彭岳建,湖南大学数学学院教授、博士生导师。2001年于美国Emory大学获理学博士学位,2002-2012年在美国印第安纳州立大学数学系工作并获终身教授,后作为“湖南省百人计划”特聘教授回到湖南大学。彭岳建教授在极值组合、图论及相关领域做出了许多出色的工作,在国际组合图论权威刊物J. Combin. Theory Ser. B、J. Combin. Theory Ser. A、SIAM J. Discrete Math.、J. Graph Theory等发表论文80余篇。现主持国家自然科学基金重点项目。
(图片/田小霞 初审/焦雪 复审/焦红伟 马宝林 终审/董瑞 李军民)